Arduino - C programming

display AD

DIDACTA ADVANCE d.o.o.
Cakovec, Croatia (EU)
www.didacta.hr

1. BEGINNING
1.1. Upper side interface display AD

below the screen,
at left side,

there is RED

LED diode

below the screen,
at right side,
there is GREEN
LED diode

1.2. Power supply of display AD interface via battery, adapter or USB port

switch for power switch
battery powered via adapter / USB

interface power supply
(battery connector)

adjustment

output volume (sound)

supply 3.3V

output

supply 5V i2C connector 3.3V

adjustment
screen illumination

Input connectors
(A1, A2, A3)
(digital inputs)

programming
connector

. RESET
GND MOSI
X MISO
RX SCK

interface power supply
adapter 5V - PC USB

1.3. Interface launch
After startup, the text shown in Figure 1 will be displayed on the display AD interface screen.
The interface is ready to work.
If the program is already loaded in Arduino, you need to press the RESET button, to restart program.

1.4. Interface screen
The display AD interface has a black and white screen with a graphic resolution of 48 x 84 pixels (Figure 2).

0

X
0

display AD - Arduino C++ programming

Figure 1

»

»

83

47

83

Figure 2. Graphics mode - resolution 48 x 84.

47

A resolution corresponding to the font size is used to print the text (text mode). Standard size
text character (font font is 7 x 5 pixels) is 8 x 6 pixels with space pixels. That is why it is a resolution
to print 6 x 14 characters (Figure 3). When creating a program, we must take into account which program commands
we also use which mode of operation they are intended for.

Graphic functions use graphic resolution (line, circle, rectangle,

...), and text mode is used in

standard text printing (not graphic) and when defining the game screen, and positioning the player object.

8 9 10 11 12

v

13

13

Figure 3. Text mode - 6 x 14 resolution.

2

2. Arduino - C++
2.1. Basic Modules

21.1.

222

2.23.

Modules for communication between Arduino and AD interface. (DO NOT CHANGE)

These modules define how data is transferred between Arduino and the AD interface, and should
be used without changing. If you change some values or parts of the module, communication may
occur between the Arduino and the AD interface stops working. THIS MODULE IS REQUIRED.

void salji(String poruka) {
char copy[duz];
Serial.printin(poruka); poruka.toCharArray(copy,duz);
poruka = poruka +";"; // extra ; at end Wire.beginTransmission(0x11);
int duz = poruka.length(); Wire.write(copy);
if (duz > 30) Wire.endTransmission();
delay(duz*spd);
String por1 = poruka.substring(0,30)+"+"; }
char dio1[31]; }

por1.toCharArray(dio1,duz);
Wire.beginTransmission(0x11);
Wire.write(dio1);
Wire.endTransmission();

String por2 = poruka.substring(30);
duz = por2.length();

char dio2[duz];
por2.toCharArray(dio2,duz); A — VARIABLES USED IN MODULE
Wire.beginTransmission(0x11); /l-- MUST BE
Wire.write(dio2); char pit="";
Wire.endTransmission(); int spd = 8;
delay(duz*spd); e
else

RESET program module (DO NOT CHANGE)

This module resets (reset) a program running on the AD interface. It is recommended to use this
module (run - rest()) at the beginning of each program, so as not to mix the old ones data stored in the
AD interface memory with the new data. NOT REQUIRED.

void rest(){
salji("RST");
while(true)
{
trazi();
if (pit == 5){
break;

}
delay(20);
}
}

Module for reading data from the AD interface (DO NOT CHANGE)

This module requests a value from the AD interface. Values are used to determine events in the game,
such as: winning points, losing a life, or falling. If you do not play with sound or light effects this module
is NOT REQUIRED.

void trazi(){
Wire.requestFrom(0x11,1);
while (Wire.available()) {
pit = Wire.read();
}
}

2.2.4. Module for sound and light effects (CAN BE CHANGED)

This module is used in game programs. The values tested in the module are specified and cannot be
changed. Parts that are GREEN can be changed. If you want to use this module, you must
include the previous module (trazi() - which reads values) in the program. NOT REQUIRED.

void sound_light(){
if (pit == 2){ // POINTS
ispis("BIP;200;50;");
ispis("LED;G;50;");

}

if (pit == 3) { // LIFES
ispis("BIP;800;50;");
ispis("LED;R;50;");

}
if (pit == 4){ // FALL
ispis("BIP;1200;50;");
ispis("LED;R;50;");
}
}

2.2.5. Message module at the BEGINNING of the program (CAN BE CHANGED)

This module prints a message at the beginning of the program and can be modified according to
your needs.

void begin_prog()

ispis("CLS;");
ispis("START;2;1;2;");
ispis("G AM E;3;3;");
delay(2000);
ispis("CLS;");

2.2.6. Message module at the END of the program (CAN BE CHANGED)

This module requests a value from the AD interface. Values are used to display the number of points
(Score) at the end of the program. If points are won in the program, only part of the green module can
be changed. The rest of the module reads the number of points and displays it on the screen. You can
change or supplement the print position variables, name, and end message as desired.

void end_prog(){
delay(300); // must be if you read points (trazi())
trazi(); // read POINTS number (SCORE)
delay(300);
ispis("CLS;");
ispis("E N D;2;1;2;");
ispis("G AM E;3;3;");
ispis("Score:"+String(int(pit))+";3;4;");
while (true){

delay(5000);

}

}

3. PROGRAMMING - BASIC FUNCTIONS

3.1.

3.2.

3.3.

3.4.

3.5.

The first program - RST function

We use the function at the beginning of the program, and after the basic modules. Running this function
deletes the values in all fields used by the AD interface program. As part of the rest() module - 2.2.2 Page 4.

ispis("RST");

The first program - text printing "HELLO" - TEXT function

In the first program we use the TEXT function. The default value for size (s) is 1, so the function can be
called without entering a value.

TEXT = the text to be printed

x = 0-13 text mod
ispis("TEXT;x;y;s;c"); ili ispis("TEXT;x;y;c"); y=0-5 textmod

s=size 1-3 (1)

¢ = color (B-black, W-white)

At the beginning of each program, it is a good idea to use the rest() module, which deletes the values
used by the micro:bit AD program in the previous operation of the micro:bit program.

Clear the screen - CLS

CLS function to clear the contents of the screen.

ispis("CLS");

Print text in graphic mode (G)

In this program we use the TEXT function to print text in graphic resolution (graphic mode Figure 2.).
With this function we can print text at any position on the screen.

This function does not print the text directly on the screen but in the auxiliary memory (BUFFER), so after
one or more TEXT (Graphics) functions must be executed by the BUF function that displays the record
from the auxiliar screen memory. The default values are for s =1 and ¢ = B, so they do not always need
to be specified.

TEXT = the text to be printed
x = 0-83 graphics mode
. = _m T T T ST y = 0-47 graphics mode
ISpIS(TEXT,X,y,S,C,G)! ili ISPIS(TEXT,X,y,G)! s=size1-3(1)
¢ = color (B-black, W-white) (B)
G = graphics mode (84 x 48)

Print auxiliary memory - BUFFER

This function is used to display the contents of the auxiliary memory in which the graphic results are written
function, such as printing text in graphic mode. This function displays the status of the full screen with all
views previously written to the auxiliary memory. Using this function avoids vibration display for changes

by deleting, and reprinting the new state.

ispis("BUF");

3.6.

3.7.

3.8.

ispis("HELLO!;4;1;B;G");
|Sp|S("BUFu)7

Example for printing a single line of text in graphics mode

ispis("HELLO!;10;10;G");

ispis("HELLO!;11;17;G");

ispis("HELLO!;12;24;1;B;G");
(1;1;B;G");
(

ispis("HELLO!;13;3
ispis("BUF");

Example for printing multiple lines of text in graphics mode

Drawing a line - LIN

In this program, we use the LIN function to draw a line on the screen in graphics mode. Line code
we need to specify the start (x1, y1) and end (x2, y2) point on the screen. We can draw the line in black or white
colors. If we want to delete an already drawn black line, we need to draw a white line in the same position.

Give it a try!

LIN = function name

x1 = 0-83 graphics mode
PN " y1 = 0-47 graphics mode
ispis("LIN;x1;y1;x2;y2;c"); x2 = 0-83 graphics mode

y2 = 0-47 graphics mode

¢ = color (B-black, W-white)

Draw a circle or filled circle - CIR
The circle or circle is not the correct shape for the screen resolution.

In these examples, we use the CIR function to draw a circle, in graphical mode. At the circle we need to
determine the position of the center (x, y) of the circle on the screen and the radius. We can draw a circle
in black or white. If we want to delete an already drawn black circle, we need to draw a circle at the same
position white. We use the fill color to draw a circle.

CIR = function name
x = 0-83 graphic mode
y = 0-47 graphic mode
ispis("CIR;x;y;r;c;f"); r = radius of the circle (pix)
P (XYshEs), ¢ = Color (B-black, W-white)
f = Fill color (B, W)

Drawing a rectangle or filled rectangle - REC

In these examples, we use the REC function to draw a rectangle in graphical mode. Code rectangle we
need to determine the position of the upper left corner (x, y), width (0-83) and height (0-47). Rectangle

we can draw in black or white. If we want to delete an already drawn black rectangle, we need to draw,
in the same position, a white rectangle. A rectangle can only be drawn with lines or filled with color.

REC = function name

x = 0-83 graphic mode

y = 0-47 graphic mode
ispis("REC;x;y;w;h;c;f"); w = width (pix)

h = height (pix)

¢ = Color (B-black, W-white)

f = Fill color (B, W)

3.9. Fill the screen - FIL

The FIL function fills the screen with bytes of the value entered in the color field.
The screen is filled with bytes that are laid vertically as in Figure 4.

. e Ly, FIL = function name
ispis("FIL;n"); n=0-255

oV
w»

y
47 83

47
Figure 4. Print screen memory bytes

Example of filling (coloring) the screen with lines spaced one pixel apart. Color value calculation (bytes)
you can see in Figure 5.

8 vrijednost =1+ 4 + 16 + 64
16 vrijednost = 85

Figure 5. Calculate ‘color’ (bytes)

3.10. Display in black / white or white / black - DIS

The screen can be set to "normal” mode (0) - white screen with black print, or in inverse (reverse) mode (1)
- black screen with white print. By default, the screen is set to "normal” mode (0). By change
mode the complete screen content is changed via the DIS function.

. e me Ly, DIS = function name
ispis("DIS;n"); =0 - pblack / white 1 - white / black

3.11. Print pixels - PIX

PIX = function name

f T e erye AT x = 0-83 graphic mode
ISpIS(PIX,x,y,c)’ y = 0-47 graghic mode

¢ = Color (B-black, W-white)

Function for printing pixels on the screen in graphic mode.

4. PROGRAMMING - SHIFT FUNCTIONS - SCROLL
4.1. Move text UP by one line - SCU

.. SCU = function name
ispis("SCU;r"); r=rotation (R = yes, ™ = no)

4.2. Move text DOWN by one line - SCD

.. SCD = function name
ispis("SCD;r"); r=rotation (R = yes, ™ = no)

4.3. Move the screen (images) up by one or more pixels (pixel line) - SBU

fmia N BRI SBU = function name
ISPIS(SBU’n)’ n = number of pixels

4.4. Move the screen (images) DOWN by one or more pixels (pixel line) - SBD

Femicf" RTI SBD = function name
ISpIS(SBD’n)’ n = number of pixels

4.5. Horizontal screen shift (images) by one pixel - SCC

SCC = function name
. e rm e anyL s = direction of displacement (R, L)
ISpIS(SCC;s;a;b;r)! a = from text line (0-5)

b = to text line (0-5)

r = rotation (R)

5. PROGRAMMING - GAME FUNCTIONS
5.1. LED light control - LED

The interface has two built-in LED lights, one RED and one GREEN. RED is below the screen
on the left, and GREEN on the right.

LED = function name

ispis("LED;c;t"); ¢ = color (R - red, G - green)
t = time in milliseconds

5.2. Creating BITMAPE - objects - BIT

Creating graphic objects (BIT-maps or sprites) is performed in graphic mode (buffer - memory) for faster
printing on the screen and avoiding certain bad effects (flickering). Therefore, the first object (one or more
objects) are stored in a buffer, and finally the memory is displayed via the BUF function on the screen.

After creating the object (BITMAP), in this example 1, it is necessary to determine the position at which the
object will be draw and what COLOR (SPR).

You can create a bitmap according to Excel. An Excel example with a template is shown in Figure 6.
When transferring from an Excel file, you need to add a botmap number (BLACK - 1).

YOU CAN USE ALL BITMAPES AS NEEDED IF YOU DO NOT USE THE FUNCTIONS WITH WHICH
THEY ARE LINKED.

BIT = function name

ispis("BIT;n;b;b;b;b;b;b;b;b"); B = Eit{nap number (1,2,3,4,5,8,9)

RELATED BITMAPES: 2-POINT+ 3-LIFE- 4-DOOR 8-ANIMA 9-PLAYER
FREE BITMAPES: 1and §

(111 | i 1433 &

)) | 1 1 "
[] [] 211 |1 1 1] =&
[e 8 511) |1 1 1]
. . ol b | 1 129
. . . . 4 1 1 1 1 165
.. 2 1 1 1 1 1 1 219
1 1 T T

60;66;165;165;129;165;219;195

without a bitmap number

Frame 6.

| 4
ispis("BIT;1;60;66;165;165;129;165;219;195");

ispis("SPR;1;40;20;B"); //-- print a bitmap in memory
ispis("BUF"); // -- print memory to the screen

The print color allows us to print the object in BLACK and delete it in WHITE.

10

5.5. Displacement controls - horizontal and vertical - BUT

To control the player's facility in all directions, it is necessary to add entry controls on the Arduino.

BUT = function name

s = direction + or -

p = X = horizontal Y = vertical
n = number of offset pixels

ispis("BUT;s;p;n");

5.6. Player object (bitmap 9)

If we want BITMAPA to be a player object, select 9 (Player) in the menu. After creating the object it is
necessary to run the function to display it on the screen. Text mode resolution is used for positioning
(14 x 6). In the following example, the player object is plotted at position x = 5,y = 2.

ispis("BIT;9;60;66;165;165;129;189;102;219"); // player
ispis("POZ;5;2");

The PLAYER function also displays the BUFFER status on the screen, so it is not necessary
calling the BUF function.

5.7. Animation of a player object (bitmap 8)

Another bitmap is required to animate the player object. By moving the player bitmaps (9) and the player
animation bitmaps (8) are alternately drawn on the screen of the player object.

—_~

L
Y
Y

<
(]
=

(8) Animation player bitmap

ispis("BIT;9;60;66;165;165;129;189;102;219"); // player
ispis("BIT;8;60;66;165;129;189;66;231;24"); // player anima map

5.8.

5.8.

11

Animation speed control - ANI

Animation of a player's object can be faster or slower. To control the speed, we use the ANI function
(animation speed). If we want the animation (bitmap change) to be slower, we need to enter a higher
value.

femia W .»m. ANI = function name
ISpIS(ANI;n)’ n = speed (smaller number higher speed)

ispis("BIT;9;60;66;165;165;129;189;102;219"); // player
ispis("BIT;8;60;66;165;129;189;66;231;24"); // player anima map
ispis("P0OZ;5;2");

ispis("ANI;1"); // smaller number higher speed

START game (2.1.5 - str. 5)

We have the basic construction of the game with the control of the player's object movement. We need

to put a message at the beginning which will be printed after the program starts. Insert the function for
displaying the standard message begin_prog() at the beginning of the program, and after the
communication module. After printing, the function must be started sleep, so that the message can be
read, and then clear the screen with the CLS function. If we don't start screen clearing function, the player
object will be drawn over the start text.

This module prints a message at the beginning of the program and can be modified according to your needs.
void begin_prog()

ispis("CLS;");
ispis("START;2;1;2;");
ispis("GAM E;3;3;");
delay(2000);
ispis("CLS;");

5.9. COLLISION function - KOL

Fill the program with a new object (1). Draw it on the screen (SPR) several times, on different positions.
Complete the program with the KOL function. Test the difference with the function on KOL (1) and off (0).

What happens to objects when moving a player's object towards them in both case?

feni . . KOL = function name
ispis("KOL;s"); s=0-no, 1-yes

5.10. Gravity - GRV

In order for the movement of the player's object to be as natural as possible, and for him to be able to
jump and fall, it is necessary to include him in the game gravity function - GRV.

. .M. GRV =function name
ispis("GRV;s"); S=0-no.1-yes

5.11. Creating objects (horizontal and vertical) - OBJ - max. 20 objects

Objects longer than one bitmap (8x8 pixels) can be placed horizontally or vertically.
Objects are created by repeating the same bitmap several times. Objects through which points are

13

earned or lost lives are usually the length of a one bitmap, if they are longer, only the first position

is active to obtain points or loss of life.

OBJ = function name
e = screen number (1 - 5)

b = bitmap

ispis(“OBJ;e;b;x;y;n;s"); x = horizontal position (0-10)
y = vertical position (0-5)
n = length (number of repetitions)
s = direction (" or 0 = hor., 1 = ver.)

ispis("BIT;1;255;153;189;231;231;189;153;255");

ispis("BIT;9;60;66;165;165;129;189;102;219"); // player
ispis("BIT;8;60;66;165;129;189;66;231;24"); //player anima map

ispis("OBJ;1;1;0;3;6");
ispis("OBJ;1;1;8;0;5;1");
ispis("FX;1"); /I -- display "screen” 1
ispis("POZ;5;2");

ispis("ANL;1");

ispis("KOL;1");

ispis("GRV;1");

It needs to be defined first objects to be drawn on the screen via the OBJ command. All commands are

grouped into "screens" that are via the FX command displayed on the screen. In this example, we define

a “screen” 1 with two objects. Both objects are composed of the same bitmap (1). For positioning it is

necessary to determine the x and y position of the initial object bitmaps. Length (number of repetitions) is
determined by entering a value in the length field. Maximum the horizontal length is 11 (84/8 = 10.5 bitmaps).

To vertically read a bitmap, it is necessary to change the value of the "hor / ver" field to 1.

ispis("OBJ;1;1;0;0;10");
ispis("OBJ;1;1;0;5;10");
ispis("OBJ;1;1;0;1;4;1™);
ispis("OBJ;1;1;9;1;4;1");

Don't forget the FX (1) command, which must come from defined objects.

13

5.12. Creating more than one "screen" - max. 5 "screens"

If we want to create more different "screens", it is necessary to create objects for each "screen". The
following example is with two "screens" and three objects.

(ekran 1) (ekran 2)

X X

012 3 456 7 89012345267 89
y 0

1

2 AJAJIAJ|A|A

3 B [B|B|B
40 XX PO X X XXX X

5

Frame 7.

When you want to create multiple "screens" it is good to make a sketch as shown in the example in
Figure 7. We can sketch the screens via a table in Excel or raster paper. This makes it much easier to
visualize all screens, especially if horizontal and vertical objects are used.

ispis("BIT;1;255;153;189;231;231;189;153;255");
ispis("BIT;9;60;66;165;165;129;189;102;219"); // player
ispis("BIT;8;60;66;165;129;189;66;231;24"); // player anima map
ispis("OBJ;1;1;0;4;10");

ispis("OBJ;2;1;0;2;5");

ispis("OBJ;2;1;6;3;4;1");

GAME_display_AD_04.ino
5.13. Current "screens" - display a screen with a horizontal scroll - ASD

When creating a platform game, we use mobile platforms that move from one side of the screen to the
other. To run the platforms (objects) we have created we need to add the activated ASD command (1).
Objects on "screens" are printed on the screen in a circular order of "screen" numbers(1,2,1,2,1,2,...)

. . qm Cn, ASD = function name
ispis("ASD;s"); s=("or0)=no, 1=yes

The horizontal movement speed of objects can be changed with the SPD command. Lower value
variables mean a higher shift rate. The maximum speed is limited to 10, and the default is set to 100

(0 = 10). We can also increase the speed by shifting by 2 pixels (default 1), but shift more it won’t be
as ‘fine’ as a 1 pixel offset. If the program contains a lot of control objects, when the maximum speed
(10) may stop working. In that case you need to reduce the speed because the program does not
manage to process all operations in too short a time.

SPD = function name
PO T e, s = speed max.recommended speed = 10
ISpIS(SPD,S,p)’ (higher number = lower speed)

p = number of pixels

5.14. Launch the player object at the offset screen - jump - JMP

In order for the game to function normally, we must replace the classic player movement controls with
new ones. The jump of the ‘player’ directly upwards is controlled by the JMP command, which is most
often used in code platform games where the player is in the same position on the screen (horizontally).
The jump height is determined in pixels. If we want, we determine the direction of the jump by entering
the + or - variable and the jump angle. To function was active we had to add some more mandatory
functions for the position and control of the player's object movement (COLLISION, GRAVITY, PLAYER
start position).

JMP = function name

PPy T T T X = jump height - pixels
ispis("JMP;h;s;a"); s=Jdirectiong(-, +)

a = jump angle (45%) 1-5

114}

5.15. Control functions

5.15.1.

5.15.2.

5.15.3.

Game status - GAME status - trazi() (2.1.3 - page 4)

In order for a program running in micro: bit to be able to perform some functions it is
necessary read certain values used in the game. Game status is used for performance
sound effects during the game and to know when the game is over. The function is
called ONLY ONCE before testing the values obtained, or when querying for an X or Y
position player.

void trazi(){
Wire.requestFrom(0x11,1);
while (Wire.available()) {
pit = Wire.read();
}
}

Sound and light effects - sound_light() (2.1.4 - page 5)

To perform certain sound and light effects associated with a particular event in
in the game (point, loss of life, fall) we use the sound_light() function. Mandatory
previously run the function trazi().

void sound_light(){
if (pit == 2){ // POINTS
ispis("BIP;200;50;");
ispis("LED;G;50;");

}

if (pit == 3) { // LIFES
ispis("BIP;800;50;");
ispis("LED;R;50;");

}
if (pit == 4){ // FALL
ispis("BIP;1200;50;");
ispis("LED;R;50;");
}
}

Message for the end of the game - end_prog() (2.1.5 - page 5)

In order for the program to end the game with a message, it is necessary to turn on
the end_prog() function for the final one message. It is mandatory to run the
function beforehand trazi().

void end_prog(){
delay(300); // mora biti ako koristite funkciju trazi()
trazi(); // ¢ita broj osvojenih BODOVA (SCORE)
delay(300);
ispis("CLS;");
ispis("E N D;2;1;2;");
ispis("G AM E;3;3;");
ispis("Score:"+String(int(pit))+";3;4;");
while (true){
delay(5000);

}
}

5.15.4.

5.15.5.

5.15.6.

5.15.7.

5.15.8.

5.15.9.

1S

Points - BOD

To track the number of points won in the game, it is necessary to start the BOD
function with initial number of points. In a game where we can only win plus points
usually the starting value is 0. In a game with the possibility of winning and losing
points, the initial value is greater than zero. In order for a player to get points, it is
necessary to play include Points (+) objects.

femiaf" AT BOD = function name
ISpIS(BOD;n)’ n = number of points at the beginning of the game (0)

Lives - LIV

To lose a life, in the game, it is necessary to run the LIV function, which sets the
initial one the value of the number of lives in the game. Loss of life occurs during
a fall (PAD) or touches the Lives (-) object.

PR ST LIV = function name
ISpIS(le’n)’ n = number of lives at the beginning of the game

Fall loss of life - PAD

The game consists of platforms on which the player moves. When falling, the
player's object can lose a life or just reappear in the starting position. By turning
on the function PAD includes loss of life when falling off the screen.

LY R LIV = function name
ispis("PAD;b"); b=0-no 1-yes

Limited game duration - TIM

To define the duration of the game in seconds, it is necessary to turn on the TIM
function. We use the function in games where the goal is to collect as many points
in equal time limit. In such games, the points-only function is used.

s E T TIM = function name
ISpIS(TIM’n)’ n = time in seconds

Negative points - BON

If you want to turn on the deduction of points, you need to turn on the BON function.
In order for this function to be active, the LIV function must also be activated. This
feature takes away points by losing a life.

ispis("BON");

The order in which the "screen" is displayed by random selection - RND

If the game has MORE THAN TWO "screens", to avoid repeated repetition of the
same order we can turn on this feature. The random function creates a sequence
screen display.

ispis("RND");

5.16. Complete platform game

1®

(ekran 1)

(ekran 2)

X

0 12 3 45 6 7 8 9901 2 3 45 6 7 8 9

X

(]
Pk

e]

s WNREO

To make the game complete, we added to each '

Frame 8.

'screen" objects for gaining points (#&#) and losing lives

(=) according to the positions in the sketch (Figure 8), and the object for player animation.

e - 15.04.2021
// PLATFORM GAME LIKE
I/ PYTHON PROG40.PY

#include <Wire.h>

int tip1 = AO; // jump switch 1

int tip2 = A1; // jump switch 2
[fmmmmmmmm - VARIABLES - MUST BE
char pit ="";

int spd = 8;

void setup() {
pinMode(tip1, INPUT);
pinMode(tip2, INPUT);
[e START I2C COMM. - MUST BE
Wire.setClock(100000);
Wire.begin(); // join i2c bus

begin_def();
}

void loop() {
trazi();
if (pit ==9)
{
end_prog();
}
if (pit > 1 && pit < 5)

{
sound_light();

i}f (digitalRead(tip1) == LOW)
{ ispis("JMP;15;+;2");

i}f (digitalRead(tip2) == LOW)
{ ispis("JMP;15;-;2");
}}delay(100);

I SETTINGS
void begin_def() // all settings you need in program

delay(2000);
ispis("RST");
delay(200);
ispis("CLS");
delay(500);
ispis("BIT;1;255;153;189;231;231;189;153;255");
ispis("BIT;2;102;255;255;255;255;126;60;24");
ispis("BIT;3;60;60;219;255;255;219;60;60");
ispis("BIT;8;60;66;165;153;66;255;231;0"); // p.a.
ispis("BIT;9;0;0;60;66;165;153;66;255"); // player
ispis("OBJ;1;1;0;4;10");

ispis("OBJ;1;2;4;3;1");

ispis("OBJ;1;3;6;3;1");

ispis("OBJ;2;1;0;2;5")
ispis("OBJ;2;1;6;3;4");
ispis("OBJ;2;2;6;2;1");
ispis("OBJ;2;3;3;1;1");

begin_prog();

ispis("CLS");
ispis("FX;1");
ispis("POZ;4;0");
ispis("ANI;3");
ispis("KOL;1");
ispis("GRV;1");
ispis("ASD;1");
ispis("SPD;10;1");
ispis("PAD;1");
ispis("BOD;0");
ispis("LIV;5");

(continuation of the program on the next page)

I ALL MODULES
void ispis(String poruka)
{

Serial.printin(poruka);

poruka = poruka +";";

int duz = poruka.length();

if (duz > 30)

String por1 = poruka.substring(0,30)+"+";
char dio1[31];
por1.toCharArray(dio1,duz);
Wire.beginTransmission(0x11);
Wire.write(dio1);
Wire.endTransmission();

String por2 = poruka.substring(30);
duz = por2.length();

char dio2[duz];
por2.toCharArray(dio2,duz);
Wire.beginTransmission(0x11);
Wire.write(dio2);
Wire.endTransmission();
delay(duz*spd);

else

{
char copy[duz];
poruka.toCharArray(copy,duz);
Wire.beginTransmission(0x11);
Wire.write(copy);
Wire.endTransmission();
delay(duz*spd);

}

}

void trazi(){
Wire.requestFrom(0x11,1);
while (Wire.available()) {
pit = Wire.read();

}

void begin_prog()

{
ispis("CLS");
ispis("START:2;1;2");
ispis("G AM E;3;3");
delay(2000);

void end_prog(}{
delay(300);
trazi();
delay(300);
ispis("CLS");
ispis("E N D;2;1;2");
ispis("G AM E;3;3");
ispis("Score:"+String(int(pit))+";3;4");
while (true){
delay(5000);

void rest(){
ispis("RST");
while(true)
{
trazi();
if (pit == 5){
break;

}
delay(20);
}
}

void sound_light(){
if (pit == 2){ // POINTS
ispis("BIP;200;50");
ispis("LED;G;50");

}

if (pit ==3) { // LIFES
ispis("BIP;800;50");
ispis("LED;R;50");

}
if (pit == 4){ // FALL
ispis("BIP;1200;50");
ispis("LED;R;50");
}
}

GAME_display_AD_05.ino (prog40.py)

17

1B

5.16.1. Erasing data from auxiliary memory - DEL
During program creation and changing object definitions it can happen, that some
objects that you delete from the program remain stored in the interface memory. In
that In this case, ‘phantom’ objects that you have deleted from the program may
appear on the screen. To avoid this at the beginning of the program you can turn
off and on the AD or interface each time simply add the DEL function at the beginning
of the program.

This function can be removed from the program after the program is completed.

ispis("DEL");

5.16.2. Automatic level control (levels) of the game - LVL
To make the game more demanding we can add more weight novelties. The higher
the level, the higher the speed of the game and therefore harder to finish. With
automatic function control we can determine the values that determine the levels of
the game. At the beginning we type a value that defines the maximum speed of the
game (last level). After that the initial speed with which we begin the game. By how
much the speed of the game increases by moving to a higher level. The last value
determines how many points it takes to win to advance to a higher one level.

This feature may not support all game forms.

LVL = function name
s = maximum speed (last level)

femiaf" carferl). f = initial speed (first level)
|sp|s(LVL;s;f;d;b)’ d = increase in speed by the value of d

b = required number of points for a new level

5.16.3. Data exchange rate (Arduino - AD display) - spd (value)
At the beginning of the program, when a lot of data is sent to define different
functions and objects need to set the spd to 8 (initial value) or more. That way,
the AD interface program has enough time to process all the data. If the time is too
short (speed too high), the program will not be able to process everything data
sent to it by Arduino and some objects will be missing or some will not work
functions, or the program will stop working.

If you want to take action (after the part of the program that sends the settings for
objects and functions) take place faster, and to make the game as fast as possible,
you can set the spd to 4 (lowest recommended value, for highest speed).

A value less than 4 is not recommended.

The AD interface program allows you to try even with smaller values.

spd = 8;

6. EXAMPLE OF THE PROGRAM
6.1. METEORS

The game has three "screens" that are displayed randomly using the RND function (5.15.9) and is limited

to 30 seconds by the TIM function (5.15.7.). A sketch of the layout of the objects is shown in the figure

below (Figure 9).

s WNKE O

If you want to make it harder to score points, you can add more objects that will only make it harder for

(ekran 1)

(ekran 2)

(ekran 3)

X
0 1 2 3 4 5 6 7 8 9

X

0 1 2 3 4 5 6 7 8 9

X
0 1 2 3 4/ 5 6/ 7| 8 9

Figure 9.

the player to move, as well which is shown in Figure 10.

s W N K= O

(ekran 1)

(ekran 2)

(ekran 3)

X
0 1 2/ 3 4 5 6 7 8 9

X

0 1 2 3 4 5 6 7 8 9

X
01 2 3 4/ 5 6/ 7| 8 9

Figure 10.

bitma

©
w

@

[]]
]
[]
]]
[]]
ae
@
bitmap 8

I5S)

e - 15.04.2021

20

// DEMO METEORS GAME SAME LIKE PYTHON PROG42.PY

#include <Wire.h>

int tip1 = AO; // jump switch 1

int tip2 = A1; // jump switch 2
e VARIABLES - MUST BE
char pit ="";

int spd = 8;

void setup() {
pinMode(tip1, INPUT);
pinMode(tip2, INPUT);
[e START I2C COMM. - MUST BE
Wire.setClock(100000);
Wire.begin(); // join i2c bus

begin_def();
}

void loop() {
trazi();

if (pit ==9)
end_prog();

}

if (pit > 1 && pit < 5)

sound_light();

}
if (digitalRead(tip1) == LOW)
{
ispis("BUT;+;Y;2");
}
if (digitalRead(tip2) == LOW)

ispis("BUT;-;Y;2");

delay(50); // you can change this delay
1

1 SETTINGS
void begin_def() // all settings you need in program

delay(2000);

ispis("RST");

delay(200);

ispis("CLS");

delay(500);
ispis("BIT;2;102;255;219;195;195;102;60;24");
ispis("BIT;3;24;124;118;207;243;239;126;24");
ispis("BIT;8;224;112;50;95;95;50;112;224"); // anim
ispis("BIT;9;112;56;26;191;191;26;56;112"); // play.

ispis("OBJ;1;3;2;1;1"
ispis("OBJ;1;3;5;4;1"
ispis("OBJ;1;2;4;1;1"
ispis("OBJ;1;2;8;4;1"

; /1-- screen 1

~— N — ~—

ispis("OBJ;2;3;2;2;1"); //-- screen 2
ispis("OBJ;2;3;8;5;1");
ispis("OBJ;2;2;4;2;1");

ispis("OBJ;3;3;2;2;1"
ispis("OBJ;3;3;8;3;1"
ispis("OBJ;3;2;1;5;1"
ispis("OBJ;3;2;5;2;1"

; //-- screen 3

’

— N N ~—

begin_prog();
ispis("CLS");

ispis("FX;1");

ispis("POZ;4;2");

ispis("ANI;3"); // -- anima. speed
ispis("KOL;1");

I === > ispis("GRV;1") - not use
ispis("ASD;1");

ispis("SPD;10;1"); // -- brzina pomaka

I === > ispis("PAD;1") - not use
ispis("BOD;0");

ispis("LIV;5");

ispis("TIM;30"); / -- game time 30 seconds
ispis("RND"); // -- random order

spd = 4;

}
I ALL MODULES

/I same as in the previous program

GAME_display_AD_06.ino (prog42.py)

7. EXAMPLE OF THE PROGRAM

7.1. OTHER FUNCTIONS

2l

7.1.1. Take a player position or read digital inputs - GET (X, Y, 1, 2, 3)
With this function you can take the value for horizontal (X) or vertical (Y) the
position of the player on the screen. Value shows the graphical position of the
player for x (0-83) or y (0-47) value. You can use this function in any combination
when creating program. We also use this function to read the values of digital inputs.

ispis("GET;n");

GET = function name
n = variable (X, Y, A1=1,A2=2,A3 = 3)
A1-A3 digital inputs - value 0 - 1

7.2. Example program - input reading A1 - A3

/p— - 15.04.2021
// DIGITAL READING INPUTS - A1,A2,A3
/-

#include <Wire.h>

[variables for this sample
int11=0;
int12 =0;
int 13 =0;

int 1p = 0;

int12p = 0;

int 1I3p = 0;

[[~mmmmmemmemeee VARIABLES - MUST BE
char pit ="";

int spd = 8;

void setup() {
ffmmmmmmmeem START I2C COMM. - MUST BE
Wire.setClock(100000);
Wire.begin(); // join i2c bus

begin_def(); // start screen

}

void loop() {
ispis("GET;1");
trazi();
I1 = String(int(pit)).tolnt();
if (11 !=11p) {
ispis(" ;5;2");
ispis(String(11)+";5;2");
sound();
Mp =11}
ispis("GET;2");
trazi();
12 = String(int(pit)).tolnt();
if (12 1=12p) {
ispis(" ;5;3");
ispis(String(12)+";5;3");
sound();
12p =12;}
ispis("GET;3");
trazi();
I3 = String(int(pit)).tolnt();
if (13 1=13p) {
ispis(" ;5;4");
ispis(String(13)+";5;4");
sound();
3p =13;}

- for this sample
void sound(){
ispis("BIP;800;50");
Il salji("LED;G;50"); // LIGHT

1l SETTINGS
void begin_def() // all settings you need in program
{

ispis("DEL");

delay(200);

ispis("RST");

delay(200);

ispis("CLS");

delay(500);

ispis("INPUTS:;0;0");

ispis("11 =;0;2");

ispis("12 =;0;3");

ispis("I3 =;0;4");
}
/l ALL MODULES
/l same as in the previous program

GAME_display AD_03.ino

2

ispis(" ;0;0;G"); //-- delete values

ispis(" ;65;0;G");

ispis("GET;X"); /I query for X value

trazi(); /I-- read X value
ispis(String(pit)+";0;0;G"); //-- print the X value to the screen
ispis("GET;Y"); /l-- query for Y value

trazi(); /[--read Y value

ispis(String(pit)+";65;0;G"); //-- print the Y value to the screen

An example of reading and displaying the x and y positions of a player.

8. CONCLUSION

We wanted to create a screen interface that would allow data to be displayed or
created simple games. When creating a game, some functions are used to define
the operation of the game, a which we also have in real computer games (gravity).
To enable maximum creativity most functions have no limited value, which
means they will happen errors such as program shutdown or printing of incorrect
data on the screen.

We wish you a pleasant work.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

